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1 Abstract

The Pancake Problem concerns the minimum number of moves needed to
order a random stack of di�erently-sized pancakes. Mathematically, this



Figure 1: Flipping a Stack of Pancakes



We will use the one line notation.

De�nition 2.3. The identity permutation � 2 Sn maps each element of
the set f1; 2; : : : ; ng to itself. Thus, in our one line notation, for � 2 Sn; � =
(1 2 3 : : : n).

Also, each time the chef ips a stack of pancakes, a portion of the per-
mutation is reversed. We can de�ne this ip as a pre�x reversal:

De�nition 2.4. Given � 2 Sn, a pre�x reversal at �i of � = (�1 �2 : : : �i : : : �n)
is �′ 2 Sn such that �′ = (�i : : : �2 �1 �i+1 : : : �n).

Example 2.5. Let � 2 Sn, such that � = (4 7 2 1 5 3 6). The pre�x reversal
of � at 5 is �′ = (5 1 2 7 4 3 6).

Thus, the Pancake Problem translates to conducting pre�x reversals on
a permutation until the identity permutation is achieved.

3 Initial Algorithm

After experimenting with a few small permutations, one can create a trivial
algorithm to �nd the minimum number of reversals needed to obtain the
identity permutation.

Lemma 3.1. The lower bound for the number of reversals needed to trans-
form a permutation, � 2 Sn, to the identity is at most 2n reversals.

Proof. We show this using the following algorithm:

1. Given � 2 Sn, reverse at the largest number that is not in its sorted
position. (Note: a number is in its sorted position when �i = i.)

2. Reverse so that number is in its sorted position.

3. Repeat steps 1 and 2 until the identity permutation is achieved.

Since it takes at most two reversals to sort each element of � to its sorted
position, it will take at most 2n reversals to transform � to �. ut

Example 3.2. Given the permutation, � = (3 1 5 4 2). Following the trivial
algorithm,
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1. Doing step 1 of the algorithm, we reverse the permutation at 5 to obtain
(5 1 3 4 2).

2. Doing step 2 of the algorithm, we reverse the permutation at 2 to obtain
(2 4 3 1 5).

3. Doing step 1 of the algorithm, we reverse the permutation at 4 to obtain
(4 2 3 1 5).

4. Doing step 2 of the algorithm, we reverse the permutation at 1 to obtain
(1 3 2 4 5).

5. Doing step 1 of the algorithm, we reverse the permutation at 3 to obtain
(3 1 2 4 5).

6. We do not need to do step 1 of the algorithm, so we reverse the per-
mutation at 2 to obtain (2 1 3 4 5).

7. We do not need to do step 1 of the algorithm, so we reverse the per-
mutation at 1 to obtain (1 2 3 4 5).

Therefore, it takes 7 reversals to transform � to �. This is less than the
maximum of 10 because we did not need to reverse two times when sorting
1 and 2. It is common for this algorithm to result in fewer than 2n reversals
in practice.

4 Gates’ Algorithm

As an undergraduate at Harvard University in 1979, Bill Gates was presented
the Pancake Problem in his Combinatorial Mathematics class as an example
of a problem that was simple to propose, but di�cult to solve. In just a few
days, Gates returned to his professor, claiming that he had created a general
algorithm in order to rearrange a permutation � 2 Sn. Gates and his advisor,
Christos Papadimitriou, decreased the lower bound of reversals from 2n to
5n+5

3
� 1:667n, by classifying a permutation based on its block structure and

creating an algorithm that will transform any � 2 Sn to �. What follows are
a few de�nitions about his block structure.

De�nition 4.1. Given the permutation, � 2 Sn.
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� If j�i � �jj � 1 (mod n), then i is consecutive to j.

� If j�i � �i+1j = 1, then the pair (i; i+ 1) is an adjacency in �.

� A block is a maximal length sublist, x = �i �i+1 : : : �j−1 �j = y, such
that there is an adjacency between �a and �a+1 for all i � a � j. We i; i



our classi�cation of � is B � C A D.

Gates and Papadimitriou thus de�ne an algorithm which classi�es a per-
mutation into one of nine cases based on the structure of the initial element
and its consecutive elements (shown below). Once the case is identi�ed for
a permutation, the detailed reversals are performed creating a newly ar-
ranged permutation. This process is repeated until the identity permutation
is achieved.

Example 4.3. Suppose we are given � 2 S7 where � = (2 3 4 7 6 1 5).

By Gate’s Algorithm,

1. The permutation begins with the block (2; 3; 4) and 2 is consecutive to where



Gates’ Algorithm - Reversal Sequences
Case Reversal Sequence Description

1
B A Singleton B at the beginning of the permutation is
! BA consecutive with a singleton A.

2
B A � Singleton B at the beginning of the permutation is
! BA � consecutive with the left endpoint A of a block A �.

3

B � A � C Singleton B at the beginning of the permutation is
! A � B � C consecutive with the last elements (A and C) of 2
! � AB � C separate blocks � A and � C.
! C � BA �
! � CBA �

4
B � A Left endpoint of block B � at the beginning of the
! � BA permutation is consecutive with a singleton A.

5
B � A � Left endpoint of block B � at the beginning of the
! � BA � permutation is consecutive with A in block A �.

6

B � C D � Right endpoint C in block B � C at the beginning is
! C � B D � consecutive with left endpoint D in block D �.
! B � CD �

7

B � C � D Right endpoint C in block B � C at the beginning is
! C � B D � consecutive with right endpoint D in block � D.
! � DC � B

8

B � C � A D The block B � C is at the beginning, left endpoint B is
! D A � C � B consecutive with right endpoint A in block � A. The
! � A D � B endpoint C of B � C is consecutive with a singleton D
! B � D A � occurring to the right of � A.
! D � A �

9

B � C D � A The block B � C is at the beginning, left endpoint B is
! D C � B � A consecutive with right endpoint A in block � A. The
! D � B � A endpoint C of B � C is consecutive with a singleton D
! A � B � D occurring between the block B � C and the block � A.
! � A � D
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intact until 2008, when a group of researchers at the University of Texas
at Dallas lowered the bound to 18

11
n � 1:636n with the use of high-powered



1. Reverse at �k+1.
This results in the permutation: �k+1 �k+2



Algorithm 3. Suppose that �c = (�1 �2 : : : �k �k+i �k+2 : : : �k+i−1 �k+1 �k+i+1 : : : �n).
The distance of the transposition, (�k+1 �k+i) is greater than 2.

1. Reverse at �k.
This results in the permutation: �k : : : �2 �1 �k+i �k+2 : : : �k+i−1 �k+1 �k+i+1 : : : �n.

2. Reverse at �k+i.
This results in the permutation: �k+i �1 : : : �k �k+2 : : : �k+i−1 �k+1 �k+i+1 : : : �n.

3. Reverse at �k+1.
This results in the permutation: �k+1 �k+i−1 : : : �k+2 �k : : : �1 �k+i �k+i+1 : : : �n.

4. Reverse at �k+2.
This results in the permutation: �k+2 : : : �k+i−1 �k+1 �k : : : �1 �k+i �k+i+1 : : : �n.

5. Reverse at �k+i−1.
This results in the permutation: �k+i−1 : : : �k+2 �k+1 �k : : : �1 �k+i �k+i+1 : : : �n.

6. Reverse at �1.
This results in the permutation: �1 �2 : : : �k �k+1 �k+2 : : : �k+i−1 �k+i �k+i+1 : : : �n.
This is the identity.

The general case of Algorithm 3 results in six pre�x reversals. However, if
the transposition is located at the beginning of the permutation, ie. k = 0,
then steps 1 and step 2 are not necessary, and there are only four pre�x
reversals needed. Also, if the transposition is located at the second element
of the permutation, ie. k = 1, then step 1 is not necessary, and there are
only �ve pre�x reversals needed.

Lemma 5.8. For �c described above, the maximum number of reversals re-
quired to transform �c to � is 6.

We combine the preceding three lemmas in the following theorem.

Theorem 5.9. For � 2 Sn, such that � can be decomposed into only one
transposition, the maximum number of reversals required to transform � to �
is 6.

Example 5.10. Suppose we are given � 2 S8 where � = (1 2 6 4 5 3 7 8).
We see that the distance of the transposition, (3; 6) is 6� 3 = 3.
Thus by Algorithm 3,
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1. Reverse at 2: (2 1 6 4 5 3 7 8)

2. Reverse at 6: (6 1 2 4 5 3 7 8)

3. Reverse at 3: (3 5 4 2 1 6 7 8)

4. Reverse at 4: (4 5 3 2 1 6 7 8)

5. Reverse at 5: (5 4 3 2 1 6 7 8)

6. Reverse at 1: (1 2 3 4 5 6 7 8)

Thus, my algorithm only requires 6 reversals compared to Gates’ algorithm,
which requires 10 reversals.

As seen from the example above, my algorithm requires less reversals
than Gates’ algorithm. Gates’ algorithm seems to require a maximum of
10 reversals as seen from the permutation below. We show the reversals
for this particular permutation since the transposition has a large distance
and is not located at the very beginning or end. We consider which types
of permutations result in my algorithm requiring less reversals than Gates’
algorithm in Section 6.

Lemma 5.11. Given � 2 Sn such that
� = (�1 �2 : : : �k �k+i �k+2 : : : �k+i−1 �k+1 �k+i+1 : : : �n). By Gates’ algo-
rithm, � falls into the case, B � C



5. Reverse at �k+2: (�k+2 : : : �k+i−1 �k+1 �k : : : �1 �n : : : �k+i+1 �k+i)
(Case 4)

6. Reverse at �k+i−1: (�k+i−1 : : : �k+2 �k+1 �k : : : �1 �n : : : �k+i+1 �k+i)
(Case 5)

7. Reverse at �n: (�n �1 : : : �k �k+1 �k+2 : : : �k+i−1 �n−1 : : : �k+i+1 �k+i)
(Trivial algorithm)

8. Reverse at �k+i: (�k+i �k+i+1 : : : �n−1 �k+i−1 : : : �k+2 �k+1 �k : : : �1 �n)
(Trivial algorithm cont.)

9. Reverse at �n−1: (�n−1 : : : �k+i+1 �k+i �k+i−1 : : : �k+2 �k+1 �k : : : �1 �n)
(Trivial algorithm cont.)

10. Reverse at �1: (�1 : : : �k �k+1 �k+2 : : : �k+i−1 �k+i �K+i+1 : : : �n−1 �n)
(Trivial algorithm cont.)

This is the identity permutation. ut

We can also use these three algorithms when a permutation decomposes
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5. Reverse at 1: (1 2 3 4 5 8 7 6)



4. Reverse at �k+i+1: (�k+i+1 : : : �k+j−1 �k+l �k+j+1 : : : �k+l−1

�k+j �k+l+1 : : : �n �1 : : : �k−1 �k �k+i−1 : : : �k+1 �k+i)
(Case 9 cont.)

5. Reverse at �k+1: (�k+1 : : : �k+i−1 �k �k−1 : : : �1 �n : : : �k+l+1

�k+j �k+l−1 : : : �k+j+1 �k+l �k+j−1 : : : �k+i+1 �k+i)
(Case 4)

6. Reverse at �k+i−1: (�k+i−1 : : : �k+1 �k �k−1 : : : �1 �n : : : �k+l+1

�k+j �k+l−1 : : : �k+j+1 �k+l �k+j−1 : : : �k+i+1 �k+i)
(Case 5)

7. Reverse at �k+l: (�k+l �k+j+1 : : : �k+l−1 �k+j �k+l+1 : : : �n

�1 : : : �k−1 �k �k+1 : : : �k+i−l �k+j−1 : : : �k+i+1 �k+i)
(Case 9)

8. Reverse at �k+j: (�k+j �k+l−1 : : : �k+j+1 �k+l �k+l+1 : : : �n �1 : : : �k−1

�k �k+1 : : : �k+i−l �k+j−1 : : : �k+i+1 �k+i)
(Case 9 cont.)

9. Reverse at �k+i: (�k+i �k+i+1 : : : �k+j−1 �k+i−1 : : : �k+1 �k �k−1 : : : �1

�n : : : �k+l+1 �k+l �k+j+1 : : : �k+l−1 �k+j)
(Case 9 cont.)

10. Reverse at �k+j−1: (�k+j−1 : : : �k+i+1 �k+i �k+i−1 : : : �k+1 �k �k−1 : : : �1

�n : : : �k+l+1 �k+l �k+j+1 : : : �k+l−1 �k+j)
(Case 9 cont.)

11. Reverse at �k+l−1: (�k+l−1 : : : �k+j+1 �k+l �k+l+1 : : : �n �1 : : : �k−1

�k �k+1 : : : �k+i−1 �k+i �k+i+1 : : : �k+j−1 �k+j)
(Case 4)

12. Reverse at �k+j+1: (�k+j+1 : : : �k+l−1 �k+l �k+l+1 : : : �n �1 : : : �k−1

�k �k+1 : : : �k+i−1 �k+i �k+i+1 : : : �k+j−1 �k+j)
(Case 5)

13. Reverse at �n: (�n : : : �k+l+1 �k+l �k+l−1 : : : �k+j+1 �1 : : : �k−1 �k

�k+1 : : : �k+i−1 �k+i �k+i+1 : : : �k+j−1 �k+j)
(Trivial Algorithm)
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6 Statistics



We complete a similar analysis for the double, disjoint, non-overlapping
transpositions. Let x; y; a; b; c 2 Z such that, given � 2 Sn,

(�1 : : : �k|



� disjoint transpositions such that two transpositions are overlapping: ie.
� = (6 2 9 4 5 1 7 8 3).

� non-disjoint transpositions, or a 3-cycle: ie. � = (1 4 3 7 5 6 2).
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A Statistical Analysis

Single Transposition Cases

x a b Alyssa Gates Di�erence
1 0 0 1 1 0
1 0 1 1 1 0
1 0 2+ 1 1 0
1 1 0 3 3 0
1 1 1 3 3 0
1 1 2+ 3 7 4
1 2+ 0 3 4 1
1 2+ 1 3 3 0
1 2+ 2+ 3 7 4
2 0 0 1 1 0
2 0 1 1 1 0
2 0 2+ 1 1 0
2 1 0 3 4 1
2 1 1 3 3 0
2 1 2+ 3 7 4
2 2+ 0 3 5 2
2 2+ 1 3 3 0
2 2+ 2+ 3 7 4

3+ 0 0 4 4 0
3+ 0 1 4 8 4
3+ 0 2+ 4 8 4
3+ 1 0 5 5 0
3+ 1 1 5 8 3
3+ 1 2+ 5 5 0
3+ 2+ 0 6 6 0
3+ 2+ 1 6 10 4
3+ 2+ 2+ 6 10 4
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Double Disjoint Transposition Cases



Double Disjoint Transposition Cases (cont.)

x y a b c Alyssa Gates Di�erence
2 2 0 0 0 4 4 0
2 2 0 0 1 4 6 2
2 2 0 1 0 4 6 2
2 2 0 1 1 4 4 0
2 2 1 0 0 6 6 0
2 2 1 1 0 6 9 3
2 2 1 0 1 6 8 2
2 2 1 1 1 6 13 7
2 2 0 0 2+ 4 6 2
2 2 0 2+ 0 4 6 2
2 2 0 2+ 2+ 4 4 0
2 2 2+ 0 0 6 6 0
2 2 2+ 2+ 0 6 8 2
2 2 2+ 0 2+ 6 8 2
2 2 2+ 2+ 2+ 6 6 0
2 2 0 1 2+ 4 4 0
2 2 0 2+ 1 4 4 0
2 2 1 2+ 0 6 8 2
2 2 2+ 1 0 6 8 2
2 2 1 0 2+ 6 8 2
2 2 2+ 0 1 6 8 2
2 2 1 1 2+ 6 11 5
2 2 1 2+ 2+ 6 10 4
2 2 1 2+ 1 6 6 0
2 2 2+ 1 1 6 6 0
2 2 2+ 2+ 1 6 6 0
2 2 2+ 1 2+ 6 6 0
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