The Pancake Problem:
Pre X Reversals of Certain Permutations

Alyssa Armstrong

May 8, 2009

Contents
[I_Absfract |
[2_The Problem |

(3 Initial Algorithm

{4 Gates' Algorithm

[> My Algorithm |

6 Statistics |

[/ Conclusion |

8 References|

A Statistical Analysis

16

18

18

19

1 Abstract

The Pancake Problem concerns the minimum number of moves needed to
order a random stack of di erently-sized pancakes. Mathematically, this

Figure 1: Flipping a Stack of Pancakes

We will use the one line notation.

De nition 2.3. The identity permutation 2 S, maps each element of
the set f1;2;:::;ng to itself. Thus, in our one line notation, for 2 S,; =
(123:::n).

Also, each time the chef ips a stack of pancakes, a portion of the per-
mutation is reversed. We can de ne this ip as a pre X reversal:

De nition 2.4. Given 2 S,,apre xreversalat ;of =(,::: j:::

is "2Spsuchthat "= (i ::: 2 1 i+1 0 n)

Example 2.5. Let 2 S,,,suchthat =(4721536). The pre X reversal
of atb5is '=(5127436).

Thus, the Pancake Problem translates to conducting pre X reversals on
a permutation until the identity permutation is achieved.

3 Initial Algorithm

After experimenting with a few small permutations, one can create a trivial
algorithm to nd the minimum number of reversals needed to obtain the
identity permutation.

Lemma 3.1. The lower bound for the number of reversals needed to trans-
form a permutation, 2 S,, to the identity is at most 2n reversals.

Proof. We show this using the following algorithm:

1. Given 2 S,, reverse at the largest number that is not in its sorted
position. (Note: a number is in its sorted position when ; =1i.)

2. Reverse so that number is in its sorted position.
3. Repeat steps 1 and 2 until the identity permutation is achieved.

Since it takes at most two reversals to sort each element of to its sorted
position, it will take at most 2n reversals to transform to . u

Example 3.2. Given the permutation, = (3154 2). Following the trivial
algorithm,

n)

1. Doing step 1 of the algorithm, we reverse the permutation at 5 to obtain
51342).

2. Doing step 2 of the algorithm, we reverse the permutation at 2 to obtain
(24315).

3. Doing step 1 of the algorithm, we reverse the permutation at 4 to obtain
(42315).

4. Doing step 2 of the algorithm, we reverse the permutation at 1 to obtain
(13245).

5. Doing step 1 of the algorithm, we reverse the permutation at 3 to obtain
(31245).

6. We do not need to do step 1 of the algorithm, so we reverse the per-
mutation at 2 to obtain (2 1 3 4 5).

7. We do not need to do step 1 of the algorithm, so we reverse the per-
mutation at 1 to obtain (1 2 3 4 5).

Therefore, it takes 7 reversals to transform to . This is less than the
maximum of 10 because we did not need to reverse two times when sorting
1 and 2. It is common for this algorithm to result in fewer than 2n reversals
in practice.

4 Gates’ Algorithm

As an undergraduate at Harvard University in 1979, Bill Gates was presented
the Pancake Problem in his Combinatorial Mathematics class as an example
of a problem that was simple to propose, but di cult to solve. In just a few
days, Gates returned to his professor, claiming that he had created a general
algorithm in order to rearrange a permutation 2 S,. Gates and his advisor,
Christos Papadimitriou, decreased the lower bound of reversals from 2n to
5”;5 1:667n, by classifying a permutation based on its block structure and
creating an algorithm that will transform any 2 S, to . What follows are

a few de nitions about his block structure.

De nition 4.1. Given the permutation, 2 S,.

Ifj i] 1(mod n), then i is consecutive to j.

Ifj i i+1) = 1, then the pair (i;1 + 1) is an adjacency in

A block is a maximal length sublist, x =
that there is an adjacency between , and

i+1:0 j—1 j =Y, such
asrforalli a Jj. We

our classi cationof isB C_A _D.

Gates and Papadimitriou thus de ne an algorithm which classi es a per-
mutation into one of nine cases based on the structure of the initial element
and its consecutive elements (shown below). Once the case is identi ed for
a permutation, the detailed reversals are performed creating a newly ar-
ranged permutation. This process is repeated until the identity permutation
is achieved.

Example 4.3. Suppose we are given 2 S;where =(23476105).

By Gate’s Algorithm,

1. The permutation begins with the block (2;3;4) and 2 is consecutive to

Gates’ Algorithm - Reversal Sequences

Case

Reversal Sequence

Description

B_A_
I BA_

BA _
I BA _

- AL
A B_
- AB_
C BA _
- CBA _

m 1w 1w m 0

m T
>

m @D
>

CD _
C BD _
B CD _

m 1w 0

C_
C BD _
- DC B.

m 1w 0

C. AD.
DA C B.
- AD B_
B DA
D A _

m 1w 1w m O

CD.
DC B. A
D B. A
A B D.

A

m 1w 1w m O

Singleton B at the beginning of the permutation is
consecutive with a singleton A.

Singleton B at the beginning of the permutation is
consecutive with the left endpoint A of a block A

Singleton B at the beginning of the permutation is
consecutive with the last elements (A and C) of 2
separate blocks Aand C.

Left endpoint of block B at the beginning of the
permutation is consecutive with a singleton A.

Left endpoint of block B at the beginning of the
permutation is consecutive with A in block A

Right endpoint C in block B C at the beginning is
consecutive with left endpoint D in block D

Right endpoint C in block B C at the beginning is
consecutive with right endpoint D in block D.

The block B C is at the beginning, left endpoint B is
consecutive with right endpoint A in block A. The
endpoint C of B C is consecutive with a singleton D
occurring to the right of A.

The block B C is at the beginning, left endpoint B is
consecutive with right endpoint A in block A. The

endpoint C of B C is consecutive with a singleton D
occurring between the block B C and the block A.

8

intact until 2008, when a group of researchers at the University of Texas
at Dallas lowered the bound to £n 1:636n with the use of high-powered

1. Reverse at 4.
This results in the permutation: 41 k42

Algorithm 3. Supposethat . =(1 2::: k ki k+2::% Kk+iol Kk+1 Kk+i+l-o: n)-
The distance of the transposition, (k+1 «k+i) IS greater than 2.

1. Reverse at .
This results in the permutation: x::: 2 1 k+i k+2::: kti_l k+1 Kk+i+l.s: n-

2. Reverse at .
This results in the permutation: +i 1::7 k k+2:': Kk#il K+l Kk+i+l.:: n-

3. Reverse at 4.
This results in the permutation: g+1 k+i-1::: k+2 k-:: 1 k+i k+i+l: s n-

4. Reverse at y4o.
This results in the permutation: g+2::: k+i1 k+1 k-i: 1 Kk+i k+i+l:.s n-

5. Reverse at 4i_1.
This results in the permutation: yg+i_1::: k+2 k+1 k::: 1 k+i k+i+l.:: n-

6. Reverse at ;.
This results in the permutation: 1 2770 K Kk+1 K42 17 K+i-1 k+i k=+i+1--7 n-
This is the identity.

The general case of Algorithm 3 results in six pre x reversals. However, if
the transposition is located at the beginning of the permutation, ie. k = 0,
then steps 1 and step 2 are not necessary, and there are only four pre x
reversals needed. Also, if the transposition is located at the second element
of the permutation, ie. k = 1, then step 1 is not necessary, and there are
only ve pre x reversals needed.

Lemma 5.8. For . described above, the maximum number of reversals re-
quired to transform . to is 6.

We combine the preceding three lemmas in the following theorem.

Theorem 5.9. For 2 S,, such that can be decomposed into only one
transposition, the maximum number of reversals required to transform to
is 6.

Example 5.10. Suppose we are given 2 Sgwhere =(126453738).
We see that the distance of the transposition, (3;6) is6 3 =3.
Thus by Algorithm 3,

11

1. Reverseat?2: (21645378)
2. Reverseat6: (61245378)
Reverse at 3: (35421678)
Reverse at 4: (45321678)

o &~ w

Reverse at5: (54321678)
6. Reverseat1l: (12345678)

Thus, my algorithm only requires 6 reversals compared to Gates’ algorithm,
which requires 10 reversals.

As seen from the example above, my algorithm requires less reversals
than Gates’ algorithm. Gates’ algorithm seems to require a maximum of
10 reversals as seen from the permutation below. We show the reversals
for this particular permutation since the transposition has a large distance
and is not located at the very beginning or end. We consider which types
of permutations result in my algorithm requiring less reversals than Gates’
algorithm in Section 6.

Lemma 5.11. Given 2 S,, such that
= (1 2110 k k+i k+2:l0 k+i-l k+1 k+i+1..: n). By Gates’ algo-
rithm, falls into the case, B C

5. Reverse at y+2: (k+2:10 k+icl k+l kiii o1 niii kil ki)

(Case 4)

6. Reverse at yi—1: (k+ic1:1% k#2 K+l k-it 1 niii kwidl ki)
(Case 5)

7. Reverse at n: (n 1010 Kk K+l k#2010 Kbicl n—1iii k+itl ki)

(Trivial algorithm)

8. Reverse at it (k+i k+i+1:0 o1 k+i—1::: k+2 k+l kil 1 n)
(Trivial algorithm cont.)

9. Reverse at 10 (n-1:: Kk+i+l ki k+i—l::: k+2 k+l k.t 1 n)
(Trivial algorithm cont.)

10. Reverse at 1@ (1::0 Kk k#l k+2::0 k#icl ki K+i+l:i: n-1 n)
(Trivial algorithm cont.)

This is the identity permutation. u

We can also use these three algorithms when a permutation decomposes

into two (or more) disjoe can 2(can)-334(2(can)4(2(ca(7.977utation.)]TJ/F389et2se2pping] TI/F3:

5. Reverseat1l: (12345876)

10.

11.

12.

13.

Reverse at +i+1! (K+i+l s ktj—1 K+l Kktj+l--e Kk+l—1
K+j KH+1:00 n 1000 kel ko kbieleii kbl keki)
(Case 9 cont.)

Reverse at 1! (ke1'i7 kil k k1000 1 niil kel

Ktj ktl—1: 00 ktj+l kbl kbjoloit keitl ki)

(Case 4)

Reverse at yri—1: (k#1000 kel k k-1:'0 1 niii kel+l
Ktj ktl—1:00 kj+l kbl kjo1:it keitl ki)

(Case 5)

Reverse at 1t (k+l k+j+1::0 ktl-1 k+j k+l+1::: n

1000 kel ko kHLiil kol kbj—10iD kitl ki)

(Case 9)

Reverse at y+j: (k+j k+l—1:07 k+j+l k+l KkHl+1::0 n 105
Ko oktliil kol ktj—1:00 keitl k+i)

(Case 9 cont.)

Reverse at y+it (ki keitl:i: ktj—1 Kk+icl:i: kel k k1.
NITD KL Kl kbjliii K= kj)

(Case 9 cont.)

Reverse at yaj—10 (kj-1:00 kbitl ki k+icl-0: k+l k k-1
NITl KL kel kRl CE k=1 k)

(Case 9 cont.)

Reverse at yi1—1: (kl—1:00 kj+1 kel kel+1::D n 1000 ket
K ktl.i kel ki K+idliil K+j—1 k+j)

(Case 4)

Reverse at yaj+1: (kaj+1:0 ktlo1 kel kel+1::: n 1010 ket
K ktl.i! kel ki K+idlil K+j—1 k+j)

(Case 5)

Reverse at ! (niil ka4l kel k+l—1:00 kj+1 1:00 kel Kk
K+1D00 Kticl K+i o kitl .ol kdj—1 k+j)

(Trivial Algorithm)

15

14.

6 Statistics

We complete a similar analysis for the double, disjoint, non-overlapping
transpositions. Let Xx;y;a;b;c 2 Z such that, given 2 S,

(|1::: k

disjoint transpositions such that two transpositions are overlapping: ie.
=(629451783).

non-disjoint transpositions, or a 3-cycle: ie. =(143756 2).

8 References

17 B. Chitturi, et al., An (18/11)n upper bound for sorting by pre X reversals,
Theoretical Computer Science (2008), doi: 10.1016/].tcs.2008.04.045.

1z Gates W.H.; Papadimitriou, C.H. Bounds for sorting by pre x reversal.
Discrete Math. 27 (1979), 47-57.

19

A Statistical Analysis

Single Transposition Cases

Di erence

10
10

Alyssa | Gates

b

2+

2+

2+

2+

2+

2+

0
1

a

2+
2+

2+
2+

1|2+ |2+

2 | 2+ | 2+

3+
3+
3+
3+
3+
3+

3+ | 2+

3+ | 2+

3+ | 2+ | 2+

20

Double Disjoint Transposition Cases

Double Disjoint Transposition Cases (cont.)

% ~MNNNO O N NNOOlO|N|[N|NN [N WO [|0 O |o |o
[
[5)
| .
5
a)
%] ™M (O [© [T |©O |00 |00 (O | [T |00 |00 |00 |00 | |O [[[|©
w - — |
31
O
% O < [[O [©O |© O | [O [©O [O [© | O [[[|©
[%2]
>
(&) At O+ 0+ i+ |+ IO+ T+ |+ |||+
o~ o~ N (NN N NN N
o O |+ |+ O+ O+ ||+ |+ OO+ |+ ||+ [
NN N N NN NN N
(4] O CO |+ |+ |+ |+ QIO+ ||+ |||+ [+ |+
N NN [N [q\] N N NN
> AN (AN [N [N [N [N [N QN[N QN[N [N [N [N QN[N [N [N (e
X AN [N QN[N [N [N QN[N | QN[N |[ON[ON[eN[eN |||

22

4

Double Disjoint Transposition Cases (cont.)

X| y| a| b| c Alyssa | Gates | Di erence
3+ |3+| 0| 0| O 10 8 -2
3+ |3+ 0| 0| 1 10 12 2
3+ |3+ 0| 1| O 10 10 0
3+ |3+ 0 1| 1 10 14 4
3+ | 3+ 1 0 0 11 14 3
3+ | 3+ 1 1 0 11 11 0
3+ | 3+ 1 0 1 11 10 3+ -1

3+ 3+

	Abstract
	The Problem
	Initial Algorithm
	Gates' Algorithm
	My Algorithm
	Statistics
	Conclusion
	References
	Statistical Analysis

