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ABSTRACT
This paper provides a method to describe and solve a com-
binatorics problem using systems of polynomial equations.
These systems, however, are too large to be solved by hand.
The goal of this paper is to give the reader two techniques to
solve these systems. The �rst technique uses Buchberger’s
Algorithm to �nd a Gr�obner basis for the system. The sec-
ond technique addresses and solves the problem if �nding a
Gr�obner basis is computationally di�cult.

1. INTRODUCTION
In 1970, Milton Bradley(c) created a game played on a
hexagon-shaped grid called ‘Drive Ya Nuts.’ The game con-
sists of seven hexagonal nuts, each having a unique arrange-
ment of the numbers one through six on each side. The
object of the game is to arrange the nuts on the grid in such
a way that adjacent sides of the nuts have matching num-
bers. Up to rotation of the entire game board, there are
possible 235; 146; 240 ways to place the nuts. Suppose that
we were able to go through every combination and check
if it were a solution every second, then it would take 7.46
years to �nd all solutions. In this paper we will determine
how many of these combinations are solutions. Disregard-

ing a brute force attempt to �nd all solutions, we begin by
describing this game by a system of polynomial equations.

2. DESCRIBING THE GAME

Figure 1: Nut B0 in initial rotation state

2.1 Notation and Description
Each nut has a particular ordering of one through six. I will
refer to the ordering of a speci�c nut by a 6-tuple, headed
by any number with subsequent numbers listed clockwise.
The �rst entry of the 6-tuple will correspond to number
located on the north side of the nut, which we call position
0. The second entry will correspond to the number located
on the east-north-east side of the nut, which we call position
1. Following entries will correspond to the next side moving
clockwise up to position 5 corresponding to west-north-west.

If the zero entry of the 6-tuple is 1, then we shall call that
the initial rotation state of the nut . For instance, in Figure
1, the second entry of B0 is 2 and the fourth entry is 5. In
a randomly assigned order, here are the de�nitions for each
nut in the initial rotation state: B0 = (1; 6; 2; 4; 5; 3), B1 =
(1; 4; 6; 2; 3; 5), B2 = (1; 6; 5; 3; 2; 4), B3 = (1; 4; 3; 6; 5; 2),
B4 = (1; 2; 3; 4; 5; 6), B5 = (1; 6; 4; 2; 5; 3), B6 = (1; 6; 5; 4; 3;
2).

Figure 2: Nut B0 rotated 4 times



example, B0 rotated four times would look like Figure 2.
The corresponding 6-tuple for B0 rotated four times would
be (2; 4; 5; 3; 1; 6):



Figure 5: f 0;1(x) on [0; 5]



4.3 Finding a Solution
We have 27 equations of degree 16 or less in 16 variables
with rational coe�cients and we want to �nd a solution
to system. If we multiply an equation in the system by
some K 2 R[g0; g1; g2; g3; g4; g5; g6; p2; p3; p4; p5; a; b; c; d] or



Proof. Using a computer algebra system, the Gr�obner
basis of I (V (I )) is < 1+12d; 1+24c;1+120b;�1+720a;�4+
p6;�3+p5;�3+p4; p3;�3+p2;�6+g6;�5+g5;�4+g4;�3+
g3;�2 + g2;�1 + g1; g0 > :

Our goal was to �nd a Gr�obner basis for I , but at best we
have found a Gr�obner basis that contains I and has the same
variety.

Theorem 4.3. < I > �< 1 + 12d; 1 + 24c;1 + 120b;�1 +
720a;�4 + p6;�3 + p5;�3 + p4; p3;�3 + p2;�6 + g6;�5 +
g5;�4 + g4;�3 + g3;�2 + g2;�1 + g1; g0 >

Proof. The proof follows directly from Lemma 7 on page
34 of [2].

We hope in the future to be able to show that the above is
an equality and show that < 1 + 12d; 1 + 24c;1 + 120b;�1 +
720a;�4 + p6;�3 + p5;�3 + p4; p3;�3 + p2;�6 + g6;�5 +
g5;�4+g4;�3+g3;�2+g2;�1+g1; g0 > is a Gr�obner basis
for our ideal.

5. SOLVING CIPRA'S PROBLEM
One interesting application to this technique of describing a
combinatorics problem as a system of polynomial equations
is Barry Cipra’s Problem featured in [1]. There are sixteen
distinct squares to be arranged on a four by four grid. Each
square contains a distinct combination of a horizontal line
through the center, a vertical line through the center, an up-
right diagonal through the center, and a down-right diagonal
through the center. Each of these squares is to be placed
on the grid, rotations not allowed, such that all horizontal,
diagonal, and vertical lines are unbroken.

Solution redundancy is di�cult to avoid in this puzzle be-
cause some of the squares are 90 degree and 180 degree
rotations of other squares. Since some squares have fournd a d



Figure 9: All of the squares in Cipra's Puzzle

these systems using ideals, varieties, and Gr�obner bases, but
that is dependent on the power of computing available to cal-
culate the Gr�obner bases. Lacking high-powered computing,
we still are able to calculate a solution using Mathematica’s
Reduce function iteratively.
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