Beaver Creek Corridor Design and Analysi

By: Alex Previte

Overview

- Introduction
- Key concepts
- Model Development
- Design
- Accuracy
- Conclusion

🔶 = Wittenberg

Introduction

 Low head dam : small overflow dam us flow characteristics of a river or stream

Dangers: •Drowning •Alter Ecosystem •User Friendly: Kayaking

Introduction

- HEC-RAS
 - Hydrologic Engineering Centers River Analysis Syste
- Computer program
- Used for analyzing rivers and streams
- Able to compute flow characteristics given certain parameters

Ũ

22

Profile Plot

- Geometry profile
 - Data taken over 300 Ft (horizontally)
 - Conta RG(Co)ta ally)

Cross-Section

- X-axis = Horizontal width of River Station
- Y-axis = Elevation above sea level
- = Bank Station marker
- Contour = shape of creek bed at that station
- Stage Height (Y) = Distance from channel bo mon to surface

Energy Equation

Oby Vo

he

a₁, a₂ = Velocity weighting
coefficients (error in average
velocity)

Development

- Determine and adjust Manning n value
- River bank adjustment
- One low-head dam replaced by a single v-notch drap structure

80

- Hydraulic Jump
 - Subcritical to supercritical

Manning Equation

• Equation:

Manning N

- Similar to
- Shows the
- Higher n means

<u>8</u>	l			<u></u>	
	٩.,	8	ul	ľ.	
· · · · · · · · · · · · · · · · · · ·	sini <mark>s</mark> tern	i Marian	00 TRA <u>ST</u>	945 <u>888</u> 5	
Western Mary and the second	<u>ne d'Arne</u>	<u>and Deed</u>	n <mark>i an_{a Maka}n</mark>	naner erstenning hjörne av	1999 - A
Natur	al streams-minor	streama:(to	pewidth.at.flo	oodstaga.< 100-ft)	
,	in Channels			nan in provinsi si mining	
tene on ofte or deen poole	and BRS mark	<u>=0.030.</u> 00	., <u>ДД8а</u> ,	<u>a clean etraight</u>	full,
0 — 0.7045 0.7040 <u> </u>	B-mime-nown Bri	ia; linemoia	nkirsinne	ana a	(17)
n national and an and an and an an and an	n de gerieden	19.000	la pad a kari Marina	hine is second spontations	<i>f</i>
il some weeds and stones.	0.045===	0.045=	6,050	divane av abo	ve, ti
verstages, more inellective	. n n4n	0.048	. 0,055	e. same as abiy	ve, lo
0.080 (-somo os ^{alfa} viki)	ingto signos		es a portane	.0.045	
~	8 ⁸			- ⁷⁸ 8	1

Froude Number

- Froude Number
- U = Velocity of flow
- g = Acceleration of gravity
- h = Depth of flow relative to the channel bottom

F'r :=

 \mathcal{U}

√ g]hi

Ш

Ш

00

- Unitless

Supercritical and Subcritical Floy

- Is the Froude number > or < than 1
 - Fr>1 = Supercritical
 - Fr<1 = Subcritical
- Supercritical When flow velocity is greater than way velocity

Ш

- Subcritical When flow velocity is less than wave
- Hydraulic Jump Occurs when a flow at high velocity.

Sub or Supercritical Flow

Subcritical Flow III

Supercritige Flow

m

Hydraulic Jumps

With V-notch want to create a hydraulic jump

• · · · · · · · · · · · · · · · · · · ·		
	7.2	57
		A0000 (11)

Designing V-

Ш 'n Ω ø <u>_</u>11 8 œ.

Designing V-notch

- Flow Prior to dam is subcritical
- Fr<1
- Supercritical flow over the dam
- Fr>1
- Not safely passable by kayak or canoe

Designing V-notch

• ()

n 22 _)))

õ,

Hydraulic Jump

• Constant Q (93 cfs)

Stage height at Vnotch is 1.43 ft.

Hydraulic ump?

Hydraulic Jump

- Ratio of height = 1.36
 - is the stage height of the v-notch

The second s

- is the stage height of the following cross-section $\mathbb{U}_{\mathbf{w}}$
- Success!
- Created an undulant jump or rapid which is passable by both canoe and kayak

Ш

80

Hydraulic Jump

• Is the model consistent?

Supercritical to subcritical flow

• Indeed our structure has a Hydraulic jump

45 0.74

<u>226 354.8 80199 0.27846 8 02 cf 75s0 1 224.33 27</u>

Model Accuracy

- Is stage height unreasonably high?
 - Uncharacteristic flow can damage downstream structure
 - Must be consistent with the stage discharge of previous structure

80

• Offset rating curves for comparison

Stage-Discharge Curve

• Pre Modification

CUIVE
 Post Modification
 Stage-Discharge KS11
 Stage-Discharge KS11
 Stage & Stage &

m

Conclusion

- HEC-RAS modeling to create modification
- Model was consistent
- Dam modifications are possible

Acknowledgements

. m

80

- Dr. George
- Dr. Williams

Questions?

